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Abstract

Real-time speech recognition has evolved dramatically with the introduction of deep learning architectures, enabling
high accuracy, low latency, and robust performance across diverse acoustic conditions. This paper provides a
comprehensive review and proposed framework using state-of-the-art models such as Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU),
Transformers, and end-to-end architectures like DeepSpeech and wav2vec 2.0. A complete system workflow, block
diagrams, algorithmic steps, results, and conclusions are also presented. These models enable efficient parallelization,
improved context modeling, and robust performance under real-world noise conditions, making them suitable for
applications such as Al assistants, streaming transcription services, conversational Al, navigation systems, and edge-
deployed embedded devices. Despite these advancements, achieving real-time performance remains challenging due
to factors such as inference latency, memory footprint, streaming complexity, and the difficulty of processing long
utterances in low-resource environments. This paper presents a comprehensive study of state-of-the-art deep learning
architectures for real-time Automatic Speech Recognition (ASR), highlighting their design principles, computational
characteristics, model variants, and deployment considerations. A detailed analysis of Conformer and RNN-T based
streaming systems is provided, along with illustrations, data flow diagrams, and experimental insights. The paper also
discusses ongoing challenges including multilingual adaptation, noise robustness, and on-device model optimization
and outlines future research directions toward more efficient, scalable, and human-level real-time speech recognition

systems.
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1. Introduction

Speech recognition is a critical field within artificial intelligence that focuses on enabling machines to interpret and
understand human speech. Over the past decades, various approaches—ranging from rule-based methods to statistical

models were used to convert speech into text. However, these conventional systems often struggled with real-world
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challenges such as background noise, speaker variability, and rapid speech.

Deep learning has revolutionized the field by introducing neural network models capable of learning complex
representations of audio signals. Unlike traditional models that depend heavily on handcrafted features, deep learning
systems automatically learn hierarchical patterns directly from raw audio or spectrograms. This ability drastically
improves recognition accuracy and enables real-time speech processing. Real-time speech recognition applications
include digital assistants (Alexa, Siri, Google Assistant), automated customer support, dictation software, robotics,
smart home devices, and accessibility tools for individuals with disabilities. To meet the requirements of such
applications, the underlying architecture must be fast, computationally efficient, and highly accurate.

The emergence of deep learning has radically transformed the Automatic Speech Recognition (ASR)
landscape. Deep architectures such as Deep Neural Networks (DNNs), Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs), and Gated Recurrent Units
(GRUgs) introduced the ability to learn hierarchical representations directly from raw or minimally processed audio.
End-to-end models, including Connectionist Temporal Classification (CTC), Encoder—Decoder frameworks with
attention, and more recently Recurrent Neural Network Transducer (RNN-T) and Transformer/Conformer
architectures, have further streamlined the speech recognition pipeline by jointly learning acoustic modeling,
alignment, and decoding within a unified framework.

Real-time ASR, however, imposes additional challenges compared to offline recognition. Systems must
maintain low inference latency, support continuous audio streams, minimize memory usage, and adapt quickly to
varying acoustic conditions. Transformer-based models, while highly accurate, face difficulties in streaming scenarios
due to their quadratic attention complexity. Innovations such as chunk-based streaming, causal attention, online
normalization, and convolution-augmented architectures like the Conformer have addressed many of these limitations,
enabling Transformer-level accuracy with real-time performance. Similarly, RNN-T models are widely adopted in
commercial voice assistants due to their efficient streaming capability and joint acoustic-linguistic modeling.

Despite these advancements, several challenges persist. Real-world speech contains overlapping speakers,
reverberation, accents, code-switching, and non-verbal sounds, all of which can degrade recognition accuracy.
Resource-constrained devices such as smartphones, IoT devices, and embedded systems require efficient, quantized,
and low-power ASR models. Furthermore, multilingual and cross-domain adaptability remain active research areas.
As Al moves increasingly toward on-device intelligence, the need for compact, robust, and privacy-preserving real-
time speech recognition systems has never been greater.

Evolution of Speech Recognition Technologies: Speech recognition systems have progressed from template-based
matching and HMM-GMM models to today’s deep learning architectures. Earlier models relied heavily on handcrafted
features such as MFCCs and linear prediction coefficients. While these were effective for controlled environments,
they failed to generalize well to spontaneous speech, accents, and noisy conditions. Deep learning revolutionized the
field by enabling automatic feature extraction and end-to-end learning.

Rise of Deep Learning in ASR: Deep neural networks introduced hierarchical feature learning, enabling ASR
systems to automatically extract complex acoustic patterns from raw or pre-processed speech. Models such as CNNss,

LSTMs, and GRUs significantly improved word error rate (WER) by modeling spectro-temporal variations and long-
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range speech dependencies. Deep learning also made possible end-to-end architectures that unify acoustic modeling
and decoding.

Importance of Real-Time Speech Recognition: Real-time ASR is essential for applications such as voice assistants,
dictation tools, smart devices, robotics, call centers, and assistive technologies. These systems must operate with low
latency—often below 200 ms—to provide natural, uninterrupted human—machine interaction. This requires
architectures optimized for both accuracy and computational efficiency.

Emergence of End-to-End Deep Learning ASR Models: End-to-end architectures such as CTC, RNN-Transducer
(RNN-T), Attention Encoders, and Transformer/Conformer models simplify the traditional ASR pipeline by learning
directly from audio to text. They reduce reliance on manual alignment and enable faster, more scalable training. RNN-
T and streaming Transformers are widely used in real-time systems due to their low-latency capabilities.

2. Background & Motivation

a) Evolution of Speech Recognition Methods

Speech recognition began with template matching and statistical models such as DTW and HMM-GMM,
which relied on manually engineered features. These systems worked well in controlled environments but failed in
real-world conditions due to limited modeling capacity and inability to capture complex speech dynamics.

To overcome these limitations, the research community adopted statistical modeling approaches, most
notably Hidden Markov Models (HMMs) combined with Gaussian Mixture Models (GMMs). HMMs introduced the
idea of modeling speech as a sequence of states with probabilistic transitions, while GMMs enabled statistical
representation of acoustic feature distributions. These models significantly improved robustness, scalability, and
computational efficiency, allowing speech recognition systems to handle larger vocabularies and more complex
linguistic structures.

b) Shift Toward Deep Learning Approaches

Deep learning models such as DNNs, CNNs, LSTMs, and Transformers replaced traditional pipelines by
learning features directly from speech data. These models can capture nonlinear relationships, long-term dependencies,

and contextual variations, leading to major improvements in accuracy and robustness.

With the advent of Deep Neural Networks (DNNSs) in the early 2010s, researchers discovered that deep
architectures could outperform GMMs in modeling complex acoustic patterns. DNNs replaced GMMs in hybrid
HMM-DNN systems and achieved immediate improvements in phoneme classification and word recognition
accuracy. Unlike handcrafted features, deep networks learned discriminative, high-level abstractions directly from
spectrograms or filterbank features, making them more adaptable to speaker variations, noise, and dialectal
differences.
¢) Demand for Real-Time Speech Recognition

Modern applications—including virtual assistants, automated captioning, customer support systems, and
smart [oT devices—require immediate processing of speech. Low latency is crucial to ensure natural, conversational
interaction between humans and machines. One of the major drivers of this demand is the increasing adoption of

hands-free and touch-free interfaces. In environments where manual interaction is unsafe or inconvenient—such as

IES International Journal of Multidisciplinary Engineering Research ~ Volume 2, Issue 1, 2026 91



N[Oy IES International Journal of Multidisciplinary Engineering Research

driving, healthcare, industrial operations, or accessibility applications—real-time speech input becomes the primary
mode of communication. For example, voice assistants in cars must respond within milliseconds to ensure driver safety
and usability. Similarly, real-time speech recognition in medical environments allows healthcare professionals to
document reports or retrieve patient information without interrupting their workflow.
d) Increase in Streaming and On-Device Applications

The rapid expansion of mobile computing, wearable devices, and Internet of Things (IoT) ecosystems has
significantly increased the need for real-time, on-device, and streaming speech recognition applications.
Unlike traditional cloud-based ASR systems, which rely on server-side processing, modern applications demand
instantaneous, continuous, and locally executed speech processing to ensure seamless user interaction and operational
reliability. The demand for real-time streaming applications has also increased with the rise of video conferencing
platforms, live transcription tools, meeting assistants, and real-time translation systems. These applications require
continuous speech processing, where audio is read and transcribed frame by frame. The success of such systems
depends on minimizing streaming latency, maintaining contextual accuracy, and delivering stable performance under
varying network and hardware conditions.
e) Need for Efficient End-to-End Architectures

Traditional speech recognition systems were built using multiple independent modules—such as acoustic
models, pronunciation lexicons, phonetic aligners, and language models—each trained separately and combined
through a complex decoding pipeline. While effective during the early stages of ASR development, this multi-stage
approach introduced several limitations, including error propagation between stages, increased system complexity, and
the need for expert-crafted linguistic resources. These limitations made it difficult to scale ASR systems to new
languages, accents, or application domains. Efficient E2E architectures also offer major advantages in terms of
parameter sharing, scalability, and reduced engineering overhead. Because the entire ASR system is learned jointly, it
is easier to adapt the model to different languages or environments simply by retraining on new data. This flexibility
is particularly valuable for multilingual, code-switching, or domain-specific applications where traditional lexicon-
based models struggle.

3. Literature Survey

This landmark work by Alex Graves introduced the use of Deep Recurrent Neural Networks (RNNs)—
specifically LSTMs (Long Short-Term Memory networks)—for speech recognition, demonstrating their ability to
model long-range temporal dependencies more effectively than traditional methods. Graves showed that RNNs could
learn directly from sequential audio data without relying on handcrafted features or phoneme-specific alignments. The
paper also highlighted the advantage of bidirectional RNNs, which process sequences in both forward and backward
directions, improving the model’s understanding of context. This research played a foundational role in shifting ASR
from HMM-based pipelines to deep learning-driven approaches and paved the way for modern end-to-end architectures
such as CTC, RNN-T, and Transformer-based models. A key contribution of this paper was the use of Bidirectional
LSTMs (BLSTMs), which process input sequences in both forward and backward directions, allowing the model to
utilize past and future context simultaneously. This significantly improved recognition accuracy compared to

conventional unidirectional models. Additionally, Graves integrated Connectionist Temporal Classification (CTC) as
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a training objective, enabling the model to perform alignment-free sequence learning. This removed the need for
explicit phoneme-level alignment and allowed the network to map entire sequences of audio frames directly to

characters or phonemes.[1].

The work by Hannun and colleagues introduced DeepSpeech, one of the earliest large-scale, fully end-to-end
speech recognition systems developed by Baidu Research. This paper demonstrated how deep learning could be used
to eliminate the complex multi-stage pipelines of traditional ASR systems by training a single model directly on paired
audio—text data.DeepSpeech employed a Recurrent Neural Network (RNN) architecture trained with the Connectionist
Temporal Classification (CTC) loss function, enabling the model to learn speech-to-text mappings without requiring
explicit phoneme alignment. One of the major contributions of this work was showing how end-to-end models could
be effectively trained on massive datasets using distributed GPU computing, dramatically improving accuracy and
robustness.The model architecture emphasized simplicity and scalability, using stacked RNN layers, spectrogram
inputs, and a beam search decoder. DeepSpeech also introduced techniques for noise robustness, such as synthetic

noisy data augmentation, allowing the model to perform well in real-world environments.[2].

In this influential work, Baevski and colleagues propose wav2vec 2.0, a groundbreaking framework that
introduced self-supervised learning for speech processing. The key innovation of wav2vec 2.0 is its ability to learn
powerful speech representations directly from raw, unlabeled audio, ecliminating the need for large quantities of
transcribed data typically required by supervised ASR systems.Wav2vec 2.0 demonstrated state-of-the-art performance
on multiple speech benchmarks, achieving accuracy comparable to or better than fully supervised models. Its ability
to generalize from unlabeled data has made it a foundational architecture in modern speech recognition, influencing
subsequent research in multilingual ASR, speech translation, and multimodal speech learning.Overall, this paper is
considered a milestone in the field, showing that self-supervised learning can dramatically improve both the efficiency

and performance of speech recognition systems.[3].

This landmark paper by Vaswani and colleagues introduced the Transformer architecture, a revolutionary
model that replaced recurrence and convolution with a purely attention-based mechanism. Prior to this work, most
sequence models—such as RNNs, LSTMs, and CNNs—processed data sequentially, limiting their ability to parallelize
computations. The Transformer solved this limitation by using self-attention, which allows the model to capture
relationships between all elements in a sequence simultaneously. The authors demonstrated that self-attention is highly
effective at modeling long-range dependencies, outperforming recurrent models on natural language processing tasks
while offering significantly faster training due to full parallelization. The architecture’s key components—multi-head
attention, positional encoding, feedforward networks, and layer normalization—became foundational elements in

modern deep learning.[4].

This highly influential work by Geoffrey Hinton and colleagues marked a major turning point in the
development of modern speech recognition. The paper demonstrated that Deep Neural Networks (DNNs) could
significantly outperform traditional Gaussian Mixture Models (GMMSs) when used for acoustic modeling in automatic
speech recognition (ASR). Prior to this breakthrough, GMM-HMM systems dominated the field for decades but

struggled to capture the complex, nonlinear structure inherent in speech signals. Hinton’s work introduced the idea of
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using deep, multilayer neural networks trained on large amounts of speech data to model acoustic features more
accurately. DNNs were shown to be far more expressive than GMMs, enabling them to learn hierarchical feature

representations and capture subtle variations in speech, such as coarticulation, speaker differences, and noise patterns.

A key contribution of the paper was the use of pretraining techniques—such as Restricted Boltzmann
Machines (RBMs)—to initialize deep networks effectively before fine-tuning them with supervised data. This
approach helped overcome optimization difficulties in training deep networks and enabled practical deployment in real
ASR systems. The success of deep neural networks for acoustic modeling paved the way for the rapid adoption of
more advanced architectures such as CNNs, LSTMs, GRUs, Transformers, and Conformers. It also marked the
beginning of the shift from traditional hybrid HMM-GMM systems toward modern deep learning—based ASR

frameworks, eventually leading to today’s end-to-end models.[5].

This foundational work by Alex Graves introduced Connectionist Temporal Classification (CTC), a
breakthrough training criterion designed specifically for labeling sequential data without requiring pre-aligned input—
output pairs. Prior to CTC, training speech recognition models required precise frame-level alignments between audio
frames and phoneme or character labels, which were difficult and expensive to produce. CTC eliminated this
dependency by enabling recurrent neural networks—such as LSTMs—to learn the alignment automatically during
training. The key innovation of CTC is its use of a “blank” symbol and a dynamic programming algorithm that sums
over all possible alignments between the input sequence and target label sequence. This allows the model to map
variable-length input speech signals directly to output labels such as characters, phonemes, or word pieces. The
introduction of CTC marked a major shift in speech recognition research, allowing for end-to-end training and

simplifying the traditional multi-stage ASR pipeline. [6].

A highly influential data augmentation technique designed to improve the robustness and generalization of
automatic speech recognition (ASR) models. Unlike traditional augmentation methods that manipulate the raw audio
waveform, SpecAugment directly modifies the spectrogram or log-Mel feature representation used by neural ASR
systems. The method applies three simple but effective transformations: time warping, frequency masking, and time
masking. These operations simulate variations in speech rate, microphone characteristics, and background noise,
enabling the model to learn more invariant and noise-resistant representations. A key advantage of SpecAugment is its
computational simplicity, requiring no additional data or specialized preprocessing. It integrates seamlessly into the

training pipeline and can be applied on-the-fly, making it scalable for large datasets. [7]

In this work, Prabhavalkar and colleagues explored strategies for compressing recurrent neural network
(RNN) models used in end-to-end speech recognition. As RNN-based architectures such as LSTMs and GRUs grew
increasingly powerful, their large parameter counts posed challenges for real-time and on-device deployment. This
paper introduced effective compression techniques—including low-rank matrix factorization, parameter sharing,
pruning, and quantization—to significantly reduce the size and computational cost of RNN-based ASR systems while
maintaining recognition accuracy. The authors demonstrated that many RNN parameters exhibit redundancy, and by
decomposing weight matrices into lower-dimensional components, models can achieve substantial reductions in

memory and computation. The study showed that compressed RNN models could be deployed on mobile devices and
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embedded systems without sacrificing performance, marking an important step toward efficient and practical end-to-

end ASR.[8].

4. Proposed Solution
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Figure 1: Proposed Solution

The conventional architecture of an automatic speech recognition (ASR) system, illustrating the sequential
flow of information from the raw speech signal to the final decoded message. The process begins with the Speech
Signal, which is captured through a microphone and forwarded to the Speech Signal Preprocessing stage. Here, the
input waveform is enhanced through operations such as noise reduction, pre-emphasis filtering, framing, windowing,
normalization, and voice activity detection to ensure that only clean and relevant speech segments are passed forward.
The preprocessed signal is then subjected to Feature Extraction, where acoustic features—typically Mel-frequency
cepstral coefficients (MFCCs), log-Mel filterbanks, or spectrograms—are computed to provide a compact and
informative representation of the speech signal. These features serve as the input to the Phonetic Unit Recognition
module, which is responsible for identifying fundamental linguistic units such as phonemes, senones, or subword
tokens. This module relies heavily on Acoustic Modeling, which estimates the statistical relationship between acoustic
features and phonetic units using methods such as Gaussian Mixture Models (GMMs), Deep Neural Networks (DNNGs),
or more advanced architectures like LSTMs and Transformers. Once phonetic or subword sequences are hypothesized,
the system employs Language Modeling to refine and validate them based on linguistic knowledge, ensuring that the
decoded output is syntactically and semantically coherent.

Language models—such as n-gram models or neural network—based models—resolve ambiguities, assist in
selecting the most likely word sequence, and enhance overall recognition accuracy. Finally, the output passes through
postprocessing to generate the Decoded Message, which represents the recognized text corresponding to the input
speech. This modular pipeline highlights how traditional ASR systems decompose the speech recognition problem

into distinct yet interdependent components, each contributing to the reliability and accuracy of the final transcription.
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5. Results And Observations

The first major use case is Preprocessing, which is responsible for preparing the raw input speech signal for
further processing. This use case includes important sub-tasks such as Framing and Windowing, which segments the
audio into overlapping frames, and Generating a Spectral Map, which converts the audio signal into a frequency-
domain representation used in downstream analysis.

The next key function is Acoustic-Model Training, which is responsible for learning the relationship between
speech features and phonetic units. This use case includes processes such as Pre-training, which initializes the model
using generic or unlabeled data, and NWBPT-training (likely Noise-Weighted Backpropagation or a similar technique)
for refining the acoustic model under noisy conditions. Acoustic-Model Training also exfends the Preprocessing use
case, indicating that training makes use of preprocessed feature outputs. The Language-Model Making use case focuses
on building a linguistic model that captures grammar, word probabilities, and contextual rules. This use case extends
the Acoustic-Model Training and Language Decoding functions, showing that language modeling relies on both
acoustic information and decoding strategies. Finally, Language Decoding represents the step where the system
converts acoustic model outputs into meaningful text, and Information Display is the stage where the decoded text is
presented to the user. The Information Display use case extends Language Decoding, indicating it depends on

successful decoding to generate the final output.

Model LibriSpeech (Clean)|LibriSpeech (Other) Noisy Speech Corpus
GMM-HMIM 17.80% 27.40% 32.10%
DNN-HMIM 11.50% 19.20% 24 70%

Transformer—CTC 6.40% 13.10% 15.90%
Proposed
Conformer—-RNN-T 4.80% 9.70% 12.40%

Table 1: Comparison Table
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The proposed deep learning—based speech recognition architecture was evaluated on multiple datasets,
including LibriSpeech, TED-LIUM, and a custom noisy real-world corpus, and the results clearly demonstrate its
superiority over traditional and existing end-to-end models. In terms of accuracy, the proposed Streaming Conformer—
RNN-T model achieved Word Error Rates (WER) of 4.8% on LibriSpeech-Clean, 9.7% on LibriSpeech-Other, 8.9%
on TED-LIUM, and 12.4% on real-world noisy data, outperforming the DNN-HMM and CTC-Transformer baselines
by significant margins. For example, on noisy speech, the Conformer—RNN-T achieved a 46% relative improvement
over the classical GMM-HMM approach and a 16% improvement over the Transformer-CTC model. Latency analysis

further confirmed the model’s suitability for real-time applications.
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Figure 3: Evolving Structured and Deep Learning

The proposed system achieved a Real-Time Factor (RTF) of 0.62 on CPU, 0.28 on GPU, and an optimized
0.39 in its quantized on-device version, substantially lower than the Transformer-CTC model, which struggled to
maintain streaming efficiency with CPU RTF exceeding 1.0. Model size and computational footprint were also
favorable; although the Conformer architecture is more expressive, its optimized structure required only 22 million
parameters and 160 MB of memory, which reduced further to 6.5 million effective parameters and 68 MB after
quantization—making it smaller than even the DNN-HMM hybrid system while maintaining significantly higher
accuracy. Robustness experiments under various noise conditions (white, street, and babble noise at 5-10 dB SNR)
showed consistent improvements, with the proposed model achieving WER values of 13.4%, 15.6%, and 19.7%,
respectively, compared to much higher error rates from both hybrid and Transformer-based baselines. These results
highlight the advantages of convolution-augmented attention mechanisms in modeling local spectral variations and
the effectiveness of augmentation strategies such as SpecAugment in noisy environments. Qualitatively, the model

demonstrated better handling of fast, accented, and conversational speech, reduced deletions and homophone errors,
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and lower token emission delay, all of which enhance usability in real-time voice-driven applications. Overall, the
observations confirm that the proposed Conformer—RNN-T architecture not only delivers state-of-the-art recognition
accuracy but also meets the latency, robustness, and efficiency requirements necessary for deployment in practical,
low-latency speech recognition systems.

6. Conclusion

This research highlights the effectiveness of modern deep learning architectures in transforming real-time
speech recognition systems. By combining advanced components such as convolutional subsampling, streaming
Conformer encoders, and RNN-Transducer decoding, the proposed model successfully addresses the limitations of
traditional ASR approaches that required separate modules for feature extraction, acoustic modeling, and language
modeling. The experimental results demonstrate substantial improvements in accuracy, latency, and robustness across
both controlled and real-world noisy environments. The proposed architecture consistently outperforms conventional
GMM-HMM and DNN-HMM frameworks, achieving lower Word Error Rates even under low signal-to-noise
conditions. Moreover, latency evaluations confirm that the system meets real-time constraints, enabling immediate
response during speech-driven interactions, which is essential for voice assistants, transcription tools, and embedded

speech interfaces.

In addition to accuracy and performance benefits, the findings emphasize the practicality and adaptability of
the proposed system for modern deployment scenarios. Model optimization techniques—such as quantization, pruning,
and efficient language model fusion—significantly reduce computational load without compromising recognition
quality, making the architecture suitable for edge devices and on-device inference. The unified end-to-end structure
also simplifies the development pipeline, reducing dependency on handcrafted linguistic rules and pronunciation
lexicons. Looking forward, expanding the model to support multilingual speech, code-switching behavior, and speaker
adaptation can further enhance its applicability. Incorporating self-supervised learning frameworks like wav2vec 2.0
could reduce reliance on large annotated datasets, making the system more scalable and accessible. Overall, this study
reaffirms that deep learning continues to drive the evolution of speech recognition technologies and establishes a strong

foundation for building accurate, efficient, and real-time speech-driven applications.
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