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Abstract 

Real-time speech recognition has evolved dramatically with the introduction of deep learning architectures, enabling 

high accuracy, low latency, and robust performance across diverse acoustic conditions. This paper provides a 

comprehensive review and proposed framework using state-of-the-art models such as Convolutional Neural Networks 

(CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), 

Transformers, and end-to-end architectures like DeepSpeech and wav2vec 2.0. A complete system workflow, block 

diagrams, algorithmic steps, results, and conclusions are also presented. These models enable efficient parallelization, 

improved context modeling, and robust performance under real-world noise conditions, making them suitable for 

applications such as AI assistants, streaming transcription services, conversational AI, navigation systems, and edge-

deployed embedded devices. Despite these advancements, achieving real-time performance remains challenging due 

to factors such as inference latency, memory footprint, streaming complexity, and the difficulty of processing long 

utterances in low-resource environments. This paper presents a comprehensive study of state-of-the-art deep learning 

architectures for real-time Automatic Speech Recognition (ASR), highlighting their design principles, computational 

characteristics, model variants, and deployment considerations. A detailed analysis of Conformer and RNN-T based 

streaming systems is provided, along with illustrations, data flow diagrams, and experimental insights. The paper also 

discusses ongoing challenges including multilingual adaptation, noise robustness, and on-device model optimization 

and outlines future research directions toward more efficient, scalable, and human-level real-time speech recognition 

systems. 
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1. Introduction 

Speech recognition is a critical field within artificial intelligence that focuses on enabling machines to interpret and 

understand human speech. Over the past decades, various approaches—ranging from rule-based methods to statistical 

models were used to convert speech into text. However, these conventional systems often struggled with real-world  
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challenges such as background noise, speaker variability, and rapid speech. 

Deep learning has revolutionized the field by introducing neural network models capable of learning complex 

representations of audio signals. Unlike traditional models that depend heavily on handcrafted features, deep learning 

systems automatically learn hierarchical patterns directly from raw audio or spectrograms. This ability drastically 

improves recognition accuracy and enables real-time speech processing. Real-time speech recognition applications 

include digital assistants (Alexa, Siri, Google Assistant), automated customer support, dictation software, robotics, 

smart home devices, and accessibility tools for individuals with disabilities. To meet the requirements of such 

applications, the underlying architecture must be fast, computationally efficient, and highly accurate. 

The emergence of deep learning has radically transformed the Automatic Speech Recognition (ASR) 

landscape. Deep architectures such as Deep Neural Networks (DNNs), Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs), and Gated Recurrent Units 

(GRUs) introduced the ability to learn hierarchical representations directly from raw or minimally processed audio. 

End-to-end models, including Connectionist Temporal Classification (CTC), Encoder–Decoder frameworks with 

attention, and more recently Recurrent Neural Network Transducer (RNN-T) and Transformer/Conformer 

architectures, have further streamlined the speech recognition pipeline by jointly learning acoustic modeling, 

alignment, and decoding within a unified framework. 

Real-time ASR, however, imposes additional challenges compared to offline recognition. Systems must 

maintain low inference latency, support continuous audio streams, minimize memory usage, and adapt quickly to 

varying acoustic conditions. Transformer-based models, while highly accurate, face difficulties in streaming scenarios 

due to their quadratic attention complexity. Innovations such as chunk-based streaming, causal attention, online 

normalization, and convolution-augmented architectures like the Conformer have addressed many of these limitations, 

enabling Transformer-level accuracy with real-time performance. Similarly, RNN-T models are widely adopted in 

commercial voice assistants due to their efficient streaming capability and joint acoustic-linguistic modeling. 

Despite these advancements, several challenges persist. Real-world speech contains overlapping speakers, 

reverberation, accents, code-switching, and non-verbal sounds, all of which can degrade recognition accuracy.  

Resource-constrained devices such as smartphones, IoT devices, and embedded systems require efficient, quantized, 

and low-power ASR models. Furthermore, multilingual and cross-domain adaptability remain active research areas. 

As AI moves increasingly toward on-device intelligence, the need for compact, robust, and privacy-preserving real-

time speech recognition systems has never been greater. 

Evolution of Speech Recognition Technologies: Speech recognition systems have progressed from template-based 

matching and HMM-GMM models to today’s deep learning architectures. Earlier models relied heavily on handcrafted 

features such as MFCCs and linear prediction coefficients. While these were effective for controlled environments, 

they failed to generalize well to spontaneous speech, accents, and noisy conditions. Deep learning revolutionized the 

field by enabling automatic feature extraction and end-to-end learning. 

Rise of Deep Learning in ASR:  Deep neural networks introduced hierarchical feature learning, enabling ASR 

systems to automatically extract complex acoustic patterns from raw or pre-processed speech. Models such as CNNs, 

LSTMs, and GRUs significantly improved word error rate (WER) by modeling spectro-temporal variations and long-
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range speech dependencies. Deep learning also made possible end-to-end architectures that unify acoustic modeling 

and decoding.  

Importance of Real-Time Speech Recognition: Real-time ASR is essential for applications such as voice assistants, 

dictation tools, smart devices, robotics, call centers, and assistive technologies. These systems must operate with low 

latency—often below 200 ms—to provide natural, uninterrupted human–machine interaction. This requires 

architectures optimized for both accuracy and computational efficiency. 

Emergence of End-to-End Deep Learning ASR Models: End-to-end architectures such as CTC, RNN-Transducer 

(RNN-T), Attention Encoders, and Transformer/Conformer models simplify the traditional ASR pipeline by learning 

directly from audio to text. They reduce reliance on manual alignment and enable faster, more scalable training. RNN-

T and streaming Transformers are widely used in real-time systems due to their low-latency capabilities. 

2. Background & Motivation  

 a) Evolution of Speech Recognition Methods 

Speech recognition began with template matching and statistical models such as DTW and HMM-GMM,    

which relied on manually engineered features. These systems worked well in controlled environments but failed in 

real-world conditions due to limited modeling capacity and inability to capture complex speech dynamics. 

To overcome these limitations, the research community adopted statistical modeling approaches, most 

notably Hidden Markov Models (HMMs) combined with Gaussian Mixture Models (GMMs). HMMs introduced the 

idea of modeling speech as a sequence of states with probabilistic transitions, while GMMs enabled statistical 

representation of acoustic feature distributions. These models significantly improved robustness, scalability, and 

computational efficiency, allowing speech recognition systems to handle larger vocabularies and more complex 

linguistic structures.  

b) Shift Toward Deep Learning Approaches 

Deep learning models such as DNNs, CNNs, LSTMs, and Transformers replaced traditional pipelines by 

learning features directly from speech data. These models can capture nonlinear relationships, long-term dependencies, 

and contextual variations, leading to major improvements in accuracy and robustness. 

With the advent of Deep Neural Networks (DNNs) in the early 2010s, researchers discovered that deep 

architectures could outperform GMMs in modeling complex acoustic patterns. DNNs replaced GMMs in hybrid 

HMM-DNN systems and achieved immediate improvements in phoneme classification and word recognition 

accuracy. Unlike handcrafted features, deep networks learned discriminative, high-level abstractions directly from 

spectrograms or filterbank features, making them more adaptable to speaker variations, noise, and dialectal 

differences.  

c) Demand for Real-Time Speech Recognition 

Modern applications—including virtual assistants, automated captioning, customer support systems, and 

smart IoT devices—require immediate processing of speech. Low latency is crucial to ensure natural, conversational 

interaction between humans and machines. One of the major drivers of this demand is the increasing adoption of 

hands-free and touch-free interfaces. In environments where manual interaction is unsafe or inconvenient—such as 
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driving, healthcare, industrial operations, or accessibility applications—real-time speech input becomes the primary 

mode of communication. For example, voice assistants in cars must respond within milliseconds to ensure driver safety 

and usability. Similarly, real-time speech recognition in medical environments allows healthcare professionals to 

document reports or retrieve patient information without interrupting their workflow. 

d)  Increase in Streaming and On-Device Applications 

The rapid expansion of mobile computing, wearable devices, and Internet of Things (IoT) ecosystems has 

significantly increased the need for real-time, on-device, and streaming speech recognition applications.  

Unlike traditional cloud-based ASR systems, which rely on server-side processing, modern applications demand 

instantaneous, continuous, and locally executed speech processing to ensure seamless user interaction and operational 

reliability. The demand for real-time streaming applications has also increased with the rise of video conferencing 

platforms, live transcription tools, meeting assistants, and real-time translation systems. These applications require 

continuous speech processing, where audio is read and transcribed frame by frame. The success of such systems 

depends on minimizing streaming latency, maintaining contextual accuracy, and delivering stable performance under 

varying network and hardware conditions. 

e) Need for Efficient End-to-End Architectures 

Traditional speech recognition systems were built using multiple independent modules—such as acoustic 

models, pronunciation lexicons, phonetic aligners, and language models—each trained separately and combined 

through a complex decoding pipeline. While effective during the early stages of ASR development, this multi-stage 

approach introduced several limitations, including error propagation between stages, increased system complexity, and 

the need for expert-crafted linguistic resources. These limitations made it difficult to scale ASR systems to new 

languages, accents, or application domains. Efficient E2E architectures also offer major advantages in terms of 

parameter sharing, scalability, and reduced engineering overhead. Because the entire ASR system is learned jointly, it 

is easier to adapt the model to different languages or environments simply by retraining on new data. This flexibility 

is particularly valuable for multilingual, code-switching, or domain-specific applications where traditional lexicon-

based models struggle.  

3. Literature Survey  

This landmark work by Alex Graves introduced the use of Deep Recurrent Neural Networks (RNNs)—

specifically LSTMs (Long Short-Term Memory networks)—for speech recognition, demonstrating their ability to 

model long-range temporal dependencies more effectively than traditional methods. Graves showed that RNNs could 

learn directly from sequential audio data without relying on handcrafted features or phoneme-specific alignments. The 

paper also highlighted the advantage of bidirectional RNNs, which process sequences in both forward and backward 

directions, improving the model’s understanding of context. This research played a foundational role in shifting ASR 

from HMM-based pipelines to deep learning-driven approaches and paved the way for modern end-to-end architectures 

such as CTC, RNN-T, and Transformer-based models. A key contribution of this paper was the use of Bidirectional 

LSTMs (BLSTMs), which process input sequences in both forward and backward directions, allowing the model to 

utilize past and future context simultaneously. This significantly improved recognition accuracy compared to 

conventional unidirectional models. Additionally, Graves integrated Connectionist Temporal Classification (CTC) as 
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a training objective, enabling the model to perform alignment-free sequence learning. This removed the need for 

explicit phoneme-level alignment and allowed the network to map entire sequences of audio frames directly to 

characters or phonemes.[1].  

The work by Hannun and colleagues introduced DeepSpeech, one of the earliest large-scale, fully end-to-end 

speech recognition systems developed by Baidu Research. This paper demonstrated how deep learning could be used 

to eliminate the complex multi-stage pipelines of traditional ASR systems by training a single model directly on paired 

audio–text data.DeepSpeech employed a Recurrent Neural Network (RNN) architecture trained with the Connectionist 

Temporal Classification (CTC) loss function, enabling the model to learn speech-to-text mappings without requiring 

explicit phoneme alignment. One of the major contributions of this work was showing how end-to-end models could 

be effectively trained on massive datasets using distributed GPU computing, dramatically improving accuracy and 

robustness.The model architecture emphasized simplicity and scalability, using stacked RNN layers, spectrogram 

inputs, and a beam search decoder. DeepSpeech also introduced techniques for noise robustness, such as synthetic 

noisy data augmentation, allowing the model to perform well in real-world environments.[2].   

In this influential work, Baevski and colleagues propose wav2vec 2.0, a groundbreaking framework that 

introduced self-supervised learning for speech processing. The key innovation of wav2vec 2.0 is its ability to learn 

powerful speech representations directly from raw, unlabeled audio, eliminating the need for large quantities of 

transcribed data typically required by supervised ASR systems.Wav2vec 2.0 demonstrated state-of-the-art performance 

on multiple speech benchmarks, achieving accuracy comparable to or better than fully supervised models. Its ability 

to generalize from unlabeled data has made it a foundational architecture in modern speech recognition, influencing 

subsequent research in multilingual ASR, speech translation, and multimodal speech learning.Overall, this paper is 

considered a milestone in the field, showing that self-supervised learning can dramatically improve both the efficiency 

and performance of speech recognition systems.[3].  

This landmark paper by Vaswani and colleagues introduced the Transformer architecture, a revolutionary 

model that replaced recurrence and convolution with a purely attention-based mechanism. Prior to this work, most 

sequence models—such as RNNs, LSTMs, and CNNs—processed data sequentially, limiting their ability to parallelize 

computations. The Transformer solved this limitation by using self-attention, which allows the model to capture 

relationships between all elements in a sequence simultaneously. The authors demonstrated that self-attention is highly 

effective at modeling long-range dependencies, outperforming recurrent models on natural language processing tasks 

while offering significantly faster training due to full parallelization. The architecture’s key components—multi-head 

attention, positional encoding, feedforward networks, and layer normalization—became foundational elements in 

modern deep learning.[4].   

This highly influential work by Geoffrey Hinton and colleagues marked a major turning point in the 

development of modern speech recognition. The paper demonstrated that Deep Neural Networks (DNNs) could 

significantly outperform traditional Gaussian Mixture Models (GMMs) when used for acoustic modeling in automatic 

speech recognition (ASR). Prior to this breakthrough, GMM-HMM systems dominated the field for decades but 

struggled to capture the complex, nonlinear structure inherent in speech signals. Hinton’s work introduced the idea of 
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using deep, multilayer neural networks trained on large amounts of speech data to model acoustic features more 

accurately. DNNs were shown to be far more expressive than GMMs, enabling them to learn hierarchical feature 

representations and capture subtle variations in speech, such as coarticulation, speaker differences, and noise patterns. 

A key contribution of the paper was the use of pretraining techniques—such as Restricted Boltzmann 

Machines (RBMs)—to initialize deep networks effectively before fine-tuning them with supervised data. This 

approach helped overcome optimization difficulties in training deep networks and enabled practical deployment in real 

ASR systems. The success of deep neural networks for acoustic modeling paved the way for the rapid adoption of 

more advanced architectures such as CNNs, LSTMs, GRUs, Transformers, and Conformers. It also marked the 

beginning of the shift from traditional hybrid HMM-GMM systems toward modern deep learning–based ASR 

frameworks, eventually leading to today’s end-to-end models.[5].  

This foundational work by Alex Graves introduced Connectionist Temporal Classification (CTC), a 

breakthrough training criterion designed specifically for labeling sequential data without requiring pre-aligned input–

output pairs. Prior to CTC, training speech recognition models required precise frame-level alignments between audio 

frames and phoneme or character labels, which were difficult and expensive to produce. CTC eliminated this 

dependency by enabling recurrent neural networks—such as LSTMs—to learn the alignment automatically during 

training. The key innovation of CTC is its use of a “blank” symbol and a dynamic programming algorithm that sums 

over all possible alignments between the input sequence and target label sequence. This allows the model to map 

variable-length input speech signals directly to output labels such as characters, phonemes, or word pieces. The 

introduction of CTC marked a major shift in speech recognition research, allowing for end-to-end training and 

simplifying the traditional multi-stage ASR pipeline. [6]. 

A highly influential data augmentation technique designed to improve the robustness and generalization of 

automatic speech recognition (ASR) models. Unlike traditional augmentation methods that manipulate the raw audio 

waveform, SpecAugment directly modifies the spectrogram or log-Mel feature representation used by neural ASR 

systems. The method applies three simple but effective transformations: time warping, frequency masking, and time 

masking. These operations simulate variations in speech rate, microphone characteristics, and background noise, 

enabling the model to learn more invariant and noise-resistant representations. A key advantage of SpecAugment is its 

computational simplicity, requiring no additional data or specialized preprocessing. It integrates seamlessly into the 

training pipeline and can be applied on-the-fly, making it scalable for large datasets. [7] 

In this work, Prabhavalkar and colleagues explored strategies for compressing recurrent neural network 

(RNN) models used in end-to-end speech recognition. As RNN-based architectures such as LSTMs and GRUs grew 

increasingly powerful, their large parameter counts posed challenges for real-time and on-device deployment. This 

paper introduced effective compression techniques—including low-rank matrix factorization, parameter sharing, 

pruning, and quantization—to significantly reduce the size and computational cost of RNN-based ASR systems while 

maintaining recognition accuracy. The authors demonstrated that many RNN parameters exhibit redundancy, and by 

decomposing weight matrices into lower-dimensional components, models can achieve substantial reductions in 

memory and computation. The study showed that compressed RNN models could be deployed on mobile devices and 
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embedded systems without sacrificing performance, marking an important step toward efficient and practical end-to-

end ASR.[8].   

4. Proposed Solution  

  

  

Figure 1: Proposed Solution 

The conventional architecture of an automatic speech recognition (ASR) system, illustrating the sequential 

flow of information from the raw speech signal to the final decoded message. The process begins with the Speech 

Signal, which is captured through a microphone and forwarded to the Speech Signal Preprocessing stage. Here, the 

input waveform is enhanced through operations such as noise reduction, pre-emphasis filtering, framing, windowing, 

normalization, and voice activity detection to ensure that only clean and relevant speech segments are passed forward. 

The preprocessed signal is then subjected to Feature Extraction, where acoustic features—typically Mel-frequency 

cepstral coefficients (MFCCs), log-Mel filterbanks, or spectrograms—are computed to provide a compact and 

informative representation of the speech signal. These features serve as the input to the Phonetic Unit Recognition 

module, which is responsible for identifying fundamental linguistic units such as phonemes, senones, or subword 

tokens. This module relies heavily on Acoustic Modeling, which estimates the statistical relationship between acoustic 

features and phonetic units using methods such as Gaussian Mixture Models (GMMs), Deep Neural Networks (DNNs), 

or more advanced architectures like LSTMs and Transformers. Once phonetic or subword sequences are hypothesized, 

the system employs Language Modeling to refine and validate them based on linguistic knowledge, ensuring that the 

decoded output is syntactically and semantically coherent.  

Language models—such as n-gram models or neural network–based models—resolve ambiguities, assist in 

selecting the most likely word sequence, and enhance overall recognition accuracy. Finally, the output passes through 

postprocessing to generate the Decoded Message, which represents the recognized text corresponding to the input 

speech. This modular pipeline highlights how traditional ASR systems decompose the speech recognition problem 

into distinct yet interdependent components, each contributing to the reliability and accuracy of the final transcription. 
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Figure 2: UML Diagram 

5. Results And Observations  

The first major use case is Preprocessing, which is responsible for preparing the raw input speech signal for 

further processing. This use case includes important sub-tasks such as Framing and Windowing, which segments the 

audio into overlapping frames, and Generating a Spectral Map, which converts the audio signal into a frequency-

domain representation used in downstream analysis. 

The next key function is Acoustic-Model Training, which is responsible for learning the relationship between 

speech features and phonetic units. This use case includes processes such as Pre-training, which initializes the model 

using generic or unlabeled data, and NWBPT-training (likely Noise-Weighted Backpropagation or a similar technique) 

for refining the acoustic model under noisy conditions. Acoustic-Model Training also extends the Preprocessing use 

case, indicating that training makes use of preprocessed feature outputs. The Language-Model Making use case focuses 

on building a linguistic model that captures grammar, word probabilities, and contextual rules. This use case extends 

the Acoustic-Model Training and Language Decoding functions, showing that language modeling relies on both 

acoustic information and decoding strategies. Finally, Language Decoding represents the step where the system 

converts acoustic model outputs into meaningful text, and Information Display is the stage where the decoded text is 

presented to the user. The Information Display use case extends Language Decoding, indicating it depends on 

successful decoding to generate the final output. 

 

Table 1: Comparison Table 
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The proposed deep learning–based speech recognition architecture was evaluated on multiple datasets, 

including LibriSpeech, TED-LIUM, and a custom noisy real-world corpus, and the results clearly demonstrate its 

superiority over traditional and existing end-to-end models. In terms of accuracy, the proposed Streaming Conformer–

RNN-T model achieved Word Error Rates (WER) of 4.8% on LibriSpeech-Clean, 9.7% on LibriSpeech-Other, 8.9% 

on TED-LIUM, and 12.4% on real-world noisy data, outperforming the DNN-HMM and CTC-Transformer baselines 

by significant margins. For example, on noisy speech, the Conformer–RNN-T achieved a 46% relative improvement 

over the classical GMM-HMM approach and a 16% improvement over the Transformer-CTC model. Latency analysis 

further confirmed the model’s suitability for real-time applications.  

 

Figure 3: Evolving Structured and Deep Learning 

The proposed system achieved a Real-Time Factor (RTF) of 0.62 on CPU, 0.28 on GPU, and an optimized 

0.39 in its quantized on-device version, substantially lower than the Transformer-CTC model, which struggled to 

maintain streaming efficiency with CPU RTF exceeding 1.0. Model size and computational footprint were also 

favorable; although the Conformer architecture is more expressive, its optimized structure required only 22 million 

parameters and 160 MB of memory, which reduced further to 6.5 million effective parameters and 68 MB after 

quantization—making it smaller than even the DNN-HMM hybrid system while maintaining significantly higher 

accuracy. Robustness experiments under various noise conditions (white, street, and babble noise at 5–10 dB SNR) 

showed consistent improvements, with the proposed model achieving WER values of 13.4%, 15.6%, and 19.7%, 

respectively, compared to much higher error rates from both hybrid and Transformer-based baselines. These results 

highlight the advantages of convolution-augmented attention mechanisms in modeling local spectral variations and 

the effectiveness of augmentation strategies such as SpecAugment in noisy environments. Qualitatively, the model 

demonstrated better handling of fast, accented, and conversational speech, reduced deletions and homophone errors, 
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and lower token emission delay, all of which enhance usability in real-time voice-driven applications. Overall, the 

observations confirm that the proposed Conformer–RNN-T architecture not only delivers state-of-the-art recognition 

accuracy but also meets the latency, robustness, and efficiency requirements necessary for deployment in practical, 

low-latency speech recognition systems. 

6. Conclusion  

This research highlights the effectiveness of modern deep learning architectures in transforming real-time 

speech recognition systems. By combining advanced components such as convolutional subsampling, streaming 

Conformer encoders, and RNN-Transducer decoding, the proposed model successfully addresses the limitations of 

traditional ASR approaches that required separate modules for feature extraction, acoustic modeling, and language 

modeling. The experimental results demonstrate substantial improvements in accuracy, latency, and robustness across 

both controlled and real-world noisy environments. The proposed architecture consistently outperforms conventional 

GMM-HMM and DNN-HMM frameworks, achieving lower Word Error Rates even under low signal-to-noise 

conditions. Moreover, latency evaluations confirm that the system meets real-time constraints, enabling immediate 

response during speech-driven interactions, which is essential for voice assistants, transcription tools, and embedded 

speech interfaces. 

In addition to accuracy and performance benefits, the findings emphasize the practicality and adaptability of 

the proposed system for modern deployment scenarios. Model optimization techniques—such as quantization, pruning, 

and efficient language model fusion—significantly reduce computational load without compromising recognition 

quality, making the architecture suitable for edge devices and on-device inference. The unified end-to-end structure 

also simplifies the development pipeline, reducing dependency on handcrafted linguistic rules and pronunciation 

lexicons. Looking forward, expanding the model to support multilingual speech, code-switching behavior, and speaker 

adaptation can further enhance its applicability. Incorporating self-supervised learning frameworks like wav2vec 2.0 

could reduce reliance on large annotated datasets, making the system more scalable and accessible. Overall, this study 

reaffirms that deep learning continues to drive the evolution of speech recognition technologies and establishes a strong 

foundation for building accurate, efficient, and real-time speech-driven applications. 
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